Estimation in Threshold Autoregressive Models with a Stationary and a Unit Root Regime

نویسندگان

  • Jiti Gao
  • Dag Tjøstheim
  • Jiying Yin
چکیده

This paper treats estimation in a class of new nonlinear threshold autoregressive models with both a stationary and a unit root regime. Existing literature on nonstationary threshold models have basically focused on models where the nonstationarity can be removed by differencing and/or where the threshold variable is stationary. This is not the case for the process we consider, and nonstandard estimation problems are the result. This paper proposes a parameter estimation method for such nonlinear threshold autoregressive models using the theory of null recurrent Markov chains. Under certain assumptions, we show that the ordinary least squares (OLS) estimators of the parameters involved are asymptotically consistent. Furthermore, it can be shown that the OLS estimator of the coefficient parameter involved in the stationary regime can still be asymptotically normal while the OLS estimator of the coefficient parameter involved in the nonstationary regime has a nonstandard asymptotic distribution. In the limit, the rate of convergence in the stationary regime is asymptotically proportional to n− 1 4 , whereas it is n−1 in the nonstationary regime. The proposed theory and estimation method are illustrated by both simulated and real data examples. Correspondence: Dag Tjøstheim, Department of Mathematics, University of Bergen, Bergen 5008, Norway. Email: [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation in Threshold Autoregressive Models with Nonstationarity

This paper proposes a class of new nonlinear threshold autoregressive models with both stationary and nonstationary regimes. Existing literature basically focuses on testing for a unit–root structure in a threshold autoregressive model. Under the null hypothesis, the model reduces to a simple random walk. Parameter estimation then becomes standard under the null hypothesis. How to estimate para...

متن کامل

Unit Root Tests in Three-Regime SETAR Models

This paper proposes a simple direct testing procedure to distinguish a linear unit root process from a globally stationary three-regime self-exciting threshold autoregressive process. We derive the asymptotic null distribution of the Wald statistic, and show that it does not depend on unknown fixed threshold values. Monte Carlo evidence clearly indicates that the exponential average of the Wald...

متن کامل

Non-Linear Unit Root Properties of Crude Oil Production

While there is good reason to expect crude oil production to be non-linear, previous studies that have examined the stochastic properties of crude oil production have assumed that crude oil production follows a linear process. If crude oil production is a non-linear process, conventional unit root tests, which assume linear and systematic adjustment, could interpret departure from linearity as ...

متن کامل

The Sustainability of Public Debt in Taiwan

This study examines whether the Taiwan’s public debt is sustainable utilizing an unrestricted two-regime threshold autoregressive (TAR) model with an autoregressive unit root. The empirical results show that Taiwan’s public debt appears as a nonlinear series and is stationary in regime 1 but not in regime 2. This result implies that while Taiwan’s public debt was mostly sustainable over the 199...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010